Quercetin phospholipid complex significantly protects against oxidative injury in ARPE-19 cells associated with activation of Nrf2 pathway

Age-related macular degeneration (AMD) is a major cause of blindness worldwide. Oxidative stress plays a crucial role in the pathogenesis of dry AMD. Quercetin has potent anti-oxidative activities, but poor bioavailability limits its therapeutic application. Herein, we prepared the phospholipid comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2016-01, Vol.770, p.1-8
Hauptverfasser: Xu, Xin-Rong, Yu, Hai-Tao, Yang, Yan, Hang, Li, Yang, Xue-Wen, Ding, Shu-Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Age-related macular degeneration (AMD) is a major cause of blindness worldwide. Oxidative stress plays a crucial role in the pathogenesis of dry AMD. Quercetin has potent anti-oxidative activities, but poor bioavailability limits its therapeutic application. Herein, we prepared the phospholipid complex of quercetin (quercetin-PC), characterized its structure by differential scanning calorimetry, infrared spectrum and x-ray diffraction. Quercetin-PC had equilibrium solubility of 38.36 and 1351.27μg/ml in water and chloroform, respectively, which was remarkably higher than those of quercetin alone. Then we established hydrogen peroxide (H2O2)-induced oxidative injury model in human ARPE-19 cells to examine the effects of quercetin-PC. Quercetin-PC, stronger than quercetin, promoted cell proliferation, and the proliferation rate was increased to be 78.89% when treated with Quercetin-PC at 400μM. Moreover, quercetin-PC effectively prevented ARPE-19 cells from apoptosis, and the apoptotic rate was reduced to be 3.1% when treated with Quercetin-PC at 200μM. In addition, quercetin-PC at 200μM significantly increased the activities of SOD, CAT and GSH-PX, and reduced the levels of reactive oxygen species and MDA in H2O2-treated ARPE-19 cells, but quercetin at 200μM failed to do so. Molecular examinations revealed that quercetin-PC at 200μM significantly activated Nrf2 nuclear translocation and significantly enhanced the expression of target genes HO-1, NQO-1 and GCL by different folds at both mRNA and protein levels. Our current data collectively indicated that quercetin-PC had stronger protective effects against oxidative-induced damages in ARPE-19 cells, which was associated with activation of Nrf2 pathway and its target genes implicated in antioxidant defense.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2015.11.050