Atazanavir-loaded Eudragit RL 100 nanoparticles to improve oral bioavailability: optimization and in vitro/in vivo appraisal

Atazanavir (ATV) is a HIV protease inhibitor. Due to its intense lipophilicity, the oral delivery of ATV encounters several problems such as poor aqueous solubility, pH-dependent dissolution, rapid first-pass metabolism in liver by CYP3A5, which result in low bioavailability. To overcome afore menti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug delivery 2016-02, Vol.23 (2), p.532-539
Hauptverfasser: Singh, Gurinder, Pai, Roopa S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atazanavir (ATV) is a HIV protease inhibitor. Due to its intense lipophilicity, the oral delivery of ATV encounters several problems such as poor aqueous solubility, pH-dependent dissolution, rapid first-pass metabolism in liver by CYP3A5, which result in low bioavailability. To overcome afore mentioned limitations, ATV-loaded Eudragit RL100 nanoparticles (ATV NPs) were prepared to enhance oral bioavailability. ATV NPs were prepared by nanoprecipitation method. The ATV NPs were systematically optimized (OPT) using 3 2 central composite design (CCD) and the OPT formulation located using overlay plot. The pharmacokinetic study of OPT formulation was investigated in male Wistar rats, and in-vitro/in-vivo correlation level was established. Intestinal permeability of OPT formulation was determined using in situ single pass perfusion (SPIP) technique. Transmission electron microscopy studies on OPT formulation demonstrated uniform shape and size of particles. Augmentation in the values of K a (2.35-fold) and AUC 0-24 (2.91-fold) indicated significant enhancement in the rate and extent of bioavailability by the OPT formulation compared to pure drug. Successful establishment of in vitro/in vivo correlation (IVIVC) Level A substantiated the judicious choice of the in vitro dissolution milieu for simulating the in vivo conditions. In situ SPIP studies ascribed the significant enhancement in absorptivity and permeability parameters of OPT formulation transport through the Peyer's patches. The studies, therefore, indicate the successful formulation development of NPs with distinctly improved bioavailability potential and can be used as drug carrier for sustained or prolonged drug release.
ISSN:1071-7544
1521-0464
DOI:10.3109/10717544.2014.930760