Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway

Currently, obesity has become a worldwide epidemic associated with Type 2 diabetes, dyslipidemia, cardiovascular disease and chronic metabolic diseases. Emodin is one of the active anthraquinone derivatives from Rheum palmatum and some other Chinese herbs with anti-inflammatory, anticancer and hepat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2016-01, Vol.770, p.99-109
Hauptverfasser: Li, Jinmei, Ding, Lili, Song, Baoliang, Xiao, Xu, Qi, Meng, Yang, Qiaoling, Yang, Qiming, Tang, Xiaowen, Wang, Zhengtao, Yang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, obesity has become a worldwide epidemic associated with Type 2 diabetes, dyslipidemia, cardiovascular disease and chronic metabolic diseases. Emodin is one of the active anthraquinone derivatives from Rheum palmatum and some other Chinese herbs with anti-inflammatory, anticancer and hepatoprotective properties. In the present study, we investigated the anti-obesity effects of emodin in obese mice and explore its potential pharmacological mechanisms. Male C57BL/6 mice were fed with high-fat diet for 12 weeks to induce obesity. Then the obese mice were divided into four groups randomly, HFD or emodin (40mg/kg/day and 80mg/kg/day) or lovastatin (30mg/kg/ day) for another 6 weeks. Body weight and food intake were recorded every week. At the end of the treatment, the fasting blood glucose, glucose and insulin tolerance test, serum and hepatic lipid levels were assayed. The gene expressions of liver and adipose tissues were analyzed with a quantitative PCR assay. Here, we found that emodin inhibited sterol regulatory element-binding proteins (SREBPs) transactivity in huh7 cell line. Furthermore, emodin (80mg/kg/day) treatment blocked body weight gain, decreased blood lipids, hepatic cholesterol and triglyceride content, ameliorated insulin sensitivity, and reduced the size of white and brown adipocytes. Consistently, SREBP-1 and SREBP-2 mRNA levels were significantly reduced in the liver and adipose tissue after emodin treatment. These data demonstrated that emodin could improve high-fat diet-induced obesity and associated metabolic disturbances. The underlying mechanism is probably associated with regulating SREBP pathway.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2015.11.045