Grading hypoxic–ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine
Highlights • An automated system for grading hypoxic–ischemic encephalopathy (HIE) severity using EEG is presented. • The classification approach is based on long-term statistical model based features. • The proposed system could act as a decision support system to assist health care professionals i...
Gespeichert in:
Veröffentlicht in: | Clinical neurophysiology 2016-01, Vol.127 (1), p.297-309 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights • An automated system for grading hypoxic–ischemic encephalopathy (HIE) severity using EEG is presented. • The classification approach is based on long-term statistical model based features. • The proposed system could act as a decision support system to assist health care professionals in NICUs. |
---|---|
ISSN: | 1388-2457 1872-8952 |
DOI: | 10.1016/j.clinph.2015.05.024 |