Grading hypoxic–ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine

Highlights • An automated system for grading hypoxic–ischemic encephalopathy (HIE) severity using EEG is presented. • The classification approach is based on long-term statistical model based features. • The proposed system could act as a decision support system to assist health care professionals i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neurophysiology 2016-01, Vol.127 (1), p.297-309
Hauptverfasser: Ahmed, Rehan, Temko, Andriy, Marnane, William, Lightbody, Gordon, Boylan, Geraldine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights • An automated system for grading hypoxic–ischemic encephalopathy (HIE) severity using EEG is presented. • The classification approach is based on long-term statistical model based features. • The proposed system could act as a decision support system to assist health care professionals in NICUs.
ISSN:1388-2457
1872-8952
DOI:10.1016/j.clinph.2015.05.024