Flow and Sediment Transport on a Tidal Salt Marsh Surface
The physical processes that control mineral sediment deposition on a mesotidal salt marsh surface on the Atlantic Coast of Virginia were characterized through a series of measurements of sediment concentration, flow velocity, turbulence, water surface elevation, marsh topography and particle size di...
Gespeichert in:
Veröffentlicht in: | Estuarine, coastal and shelf science coastal and shelf science, 2000-03, Vol.50 (3), p.315-331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The physical processes that control mineral sediment deposition on a mesotidal salt marsh surface on the Atlantic Coast of Virginia were characterized through a series of measurements of sediment concentration, flow velocity, turbulence, water surface elevation, marsh topography and particle size distributions of sediment deposited on the marsh surface. The comprehensive nature of the data set allowed assessment of the temporal and spatial variability in marsh surface deposition, the variability in depositional processes among tides of different amplitudes, as well as the specific processes that control deposition on this tidal marsh. Through three different types of measurements, it was found that sediment deposition occurred on the marsh surface during rising tides at tidal elevations ranging from those barely flooding the creek bank to high spring tides, and that sediment was not remobilized by tidal flows after initial deposition. Sediment deposition occurred on this marsh surface largely because fine sediment in suspension formed flocs. Analysis of inorganic grain size distributions of sediment deposited within 8m of the tidal creek indicated that 70–80% of this sediment was deposited in a flocculated form. The rest (particles larger than 20μm) were deposited as individual particles. In the marsh interior, 25m from the tidal creek, single grain settling predominated. Reduction of turbulence levels within the vegetation canopy on the marsh also promoted particle settling. The processes controlling sediment deposition did not vary among tides. However, suspended sediment concentrations near the creek bank increased with increasing tidal amplitude, consequently promoting higher rates of deposition on higher tides. |
---|---|
ISSN: | 0272-7714 1096-0015 |
DOI: | 10.1006/ecss.2000.0548 |