Catches per unit of effort of bigeye tuna: A new analysis with regression trees and simulated annealing
We analyzed catches per unit of effort (CPUE) from the Japanese longline fishery for bigeye tuna (Thunnus obesus) in the central and eastern Pacific Ocean (EPO) with regression tree methods. Regression trees have not previously been used to estimate time series of abundance indices from CPUE data. T...
Gespeichert in:
Veröffentlicht in: | Bulletin - Inter-American Tropical Tuna Commission 2000-01, Vol.21 (8), p.531-552 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyzed catches per unit of effort (CPUE) from the Japanese longline fishery for bigeye tuna (Thunnus obesus) in the central and eastern Pacific Ocean (EPO) with regression tree methods. Regression trees have not previously been used to estimate time series of abundance indices from CPUE data. The "optimally sized" tree had 139 parameters; year, month, latitude, and longitude interacted to affect bigeye CPUE. The trend in tree-based abundance indices for the EPO was similar to trends estimated from a generalized linear model and from an empirical model that combines oceanographic data with information on the distribution of fish relative to environmental conditions. The regression tree was more parsimonious and would be easier to implement than the other two models, but the tree provided no information about the mechanisms that caused bigeye CPUEs to vary in time and space. Bigeye CPUEs increased sharply during the mid-1980's and were more variable at the northern and southern edges of the fishing grounds. Both of these results can be explained by changes in actual abundance and changes in catch-ability. Results from a regression tree that was fitted to a subset of the data indicated that, in the EPO, bigeye are about equally catchable with regular and deep longlines. This is not consistent with observations that bigeye are more abundant at depth and indicates that classification by gear type (regular or deep longline) may not provide a good measure of capture depth. A simulated annealing algorithm was used to summarize the tree-based results by partitioning the fishing grounds into regions where trends in bigeye CPUE were similar. Simulated annealing can be useful for designing spatial strata in future sampling programs. |
---|---|
ISSN: | 0074-0993 |