Relative Contributions of Sampling Effort, Measuring, and Weighing to Precision of Larval Sea Lamprey Biomass Estimates

We developed two weight-length models from 231 populations of larval sea lampreys (Petromyzon marinus) collected from tributaries of the Great Lakes: Lake Ontario (21), Lake Erie (6), Lake Huron (67), Lake Michigan (76), and Lake Superior (61). Both models were mixed models, which used population as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Great Lakes research 2003, Vol.29, p.130-136
Hauptverfasser: Slade, Jeffrey W., Adams, Jean V., Cuddy, Douglas W., Neave, Fraser B., Sullivan, W. Paul, Young, Robert J., Fodale, Michael F., Jones, Michael L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed two weight-length models from 231 populations of larval sea lampreys (Petromyzon marinus) collected from tributaries of the Great Lakes: Lake Ontario (21), Lake Erie (6), Lake Huron (67), Lake Michigan (76), and Lake Superior (61). Both models were mixed models, which used population as a random effect and additional environmental factors as fixed effects. We resampled weights and lengths 1,000 times from data collected in each of 14 other populations not used to develop the models, obtaining a weight and length distribution from reach resampling. To test model performance, we applied the two weight-length models to the resampled length distributions and calculated the predicted mean weights. We also calculated the observed mean weight for each resampling and for each of the original 14 data sets. When the average of predicted means was compared to means from the original data in each stream, inclusion of environmental factors did not consistently improve the performance of the weight-length model. We estimated the variance associated with measures of abundance and mean weight for each of the 14 selected populations and determined that a conservative estimate of the proportional contribution to variance associated with estimating abundance accounted for 32% to 95% of the variance (mean = 66%). Variability in the biomass estimate appears more affected by variability in estimating abundance than in converting length to weight. Hence, efforts to improve the precision of biomass estimates would be aided most by reducing the variability associated with estimating abundance.
ISSN:0380-1330
DOI:10.1016/S0380-1330(03)70482-1