Molecular modeling and biocatalysis: explanations, predictions, limitations, and opportunities
Rapid advances in structural biology have revealed the three-dimensional structures of many biocatalysts. Molecular modeling is the tool that links these structures with experimental observations. As a qualitative tool, current modeling methods are extremely useful. They can explain, on a molecular...
Gespeichert in:
Veröffentlicht in: | Current Opinion in Chemical Biology 2000-02, Vol.4 (1), p.81-88 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rapid advances in structural biology have revealed the three-dimensional structures of many biocatalysts. Molecular modeling is the tool that links these structures with experimental observations. As a qualitative tool, current modeling methods are extremely useful. They can explain, on a molecular level, unusual features of reactions. They can predict how to increase the selectivity either by substrate modification or by site-directed mutagenesis. Quantitative predictions, for example the degree of enantioselectivity, are still not reliable, however. Modeling is limited also by the availability of three-dimensional structures. Most current modeling involves hydrolases, especially proteases and lipases, but structures for other types of enzymes are starting to appear. |
---|---|
ISSN: | 1367-5931 1879-0402 |
DOI: | 10.1016/S1367-5931(99)00056-3 |