Monitoring insecticide resistance in Australian Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) detects fipronil and spinosad resistance

Insecticide resistance monitoring using a Potter precision spray tower with discriminating concentration and log dose probability techniques underpins the Australian insecticide management strategy for Frankliniella occidentalis Pergande. Abamectin, acephate, chlorpyrifos, dichlorvos, dimethoate, en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australian journal of entomology 2005-08, Vol.44 (3), p.299-303
Hauptverfasser: Herron, Grant A, James, Tanya M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Insecticide resistance monitoring using a Potter precision spray tower with discriminating concentration and log dose probability techniques underpins the Australian insecticide management strategy for Frankliniella occidentalis Pergande. Abamectin, acephate, chlorpyrifos, dichlorvos, dimethoate, endosulfan, fipronil, malathion, methamidophos methidathion, methiocarb, methomyl, pyrazophos and spinosad are recommended for use against F. occidentalis but abamectin, methiocarb and pyrazophos are the only chemicals where insecticide resistance has not been detected. Although not registered, chlorfenapyr was effective against F. occidentalis and should be pursued for that purpose. In contrast, chlorpyrifos, dichlorvos and malathion resistance were detected at low to moderate levels throughout the study period putting their sustainable use for F. occidentalis control in doubt. Although it appears that acephate, dimethoate, endosulfan, fipronil, methamidophos, methidathion and spinosad remain effective, some populations contained a small percentage of thrips that survived exposure to a concentration that killed 100% of the susceptible strain. Subsequent laboratory selection of one such population separately with fipronil and spinosad caused an increase in resistance to these insecticides. These products must now be considered at risk. This is the first report of fipronil or spinosad resistance in populations of F. occidentalis.
ISSN:1326-6756
1440-6055
DOI:10.1111/j.1440-6055.2005.00478.x