Development of Castor Oil Based Poly(urethane-esteramide)/TiO2 Nanocomposites as Anticorrosive and Antimicrobial Coatings

Castor oil based polyesteramide (CPEA) resin has been successfully synthesized by the condensation polymerization of N-N-bis (2-hydroxyethyl) castor oil fatty amide (HECA) with terephthalic acid and further modified with different percentages of 7, 9, 11, and 13 wt.% of toluene-2,4-diisocyanate (TDI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2015-01, Vol.2015 (2015), p.1-10
Hauptverfasser: Shaik, Mohammed Rafi, al-Andis, Naser M., Alam, Manawwer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Castor oil based polyesteramide (CPEA) resin has been successfully synthesized by the condensation polymerization of N-N-bis (2-hydroxyethyl) castor oil fatty amide (HECA) with terephthalic acid and further modified with different percentages of 7, 9, 11, and 13 wt.% of toluene-2,4-diisocyanate (TDI) to obtain poly(urethane-esteramide) (UCPEA), via addition polymerization. TiO2 (0.1, 0.2, 0.3, 0.4, and 0.5 wt%) nanoparticles were dispersed in UCPEA resin. The structural elucidation of HECA, CPEA, and UCPEA has been carried out using FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques while physicochemical and physicomechanical properties were investigated by standard methods. Thermal stability and molecular weight of UCPEA have been assessed by thermogravimetric analysis (TGA) and gel permeation chromatography (GPC), respectively. Furthermore, the corrosion behavior of UCPEA coatings on mild steel has been investigated by potentiodynamic polarization measurements in different corrosive environments (3.5 wt% HCl, 5 wt% NaCl, 3.5 wt% NaOH, and tap water) at room temperature and surface analysis by scanning electron microscope (SEM) and energy dispersive X-ray (EDX). The antibacterial activities of the UCPEA were tested against bacteria and fungi by agar disc diffusion method. The results of this study have revealed that UCPEA nanocomposite coatings exhibit good physicomechanical, anticorrosion and antimicrobial properties, which can be safely used up to 200°C.
ISSN:1687-4110
1687-4129
DOI:10.1155/2015/745217