Biodiesel (FAME) Productivity, Catalytic Efficiency and Thermal Stability of Lipozyme TL IM for Crude Palm Oil Transesterification with Methanol

Crude palm oil (CPO) transesterification with methanol at room temperature is an important factor for optimizing biodiesel processing costs with respect to energy input; in addition, good stability of expensive lipase activity was ensured and is reported in this study. The enzyme loading, agitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Oil Chemists' Society 2010-09, Vol.87 (9), p.1027-1034
Hauptverfasser: Sim, Jia Huey, Kamaruddin, Azlina Harun, Bhatia, Subhash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crude palm oil (CPO) transesterification with methanol at room temperature is an important factor for optimizing biodiesel processing costs with respect to energy input; in addition, good stability of expensive lipase activity was ensured and is reported in this study. The enzyme loading, agitation speed and reaction time at a constant operating temperature of 30 °C were studied to find favourable operational conditions using a factorial design. Statistical analysis was used to assist the enzymatic transesterification so that a reduced mass transfer effect was achieved to obtain high FAME yields. The combination of optimum enzyme loading of 6.67 wt% and 150 rpm agitation speed for the system at 30 °C gave 81.73% FAME yield at 4 h and a production rate of 85.86% FAME yield/h. The high viscosity of CPO observed at 30 °C compared to 40 °C hindered the achievement of 96.15% FAME yield at room temperature. It was found that an increase of 10 °C invariably deactivated the lipase, but was compensated by the enhanced FAME production rate with 96.15% FAME yield after only 4 h reaction time. Thus, 40 °C was considered the most suitable operating temperature for lipozyme TL IM to catalyze CPO transesterification.
ISSN:0003-021X
1558-9331
DOI:10.1007/s11746-010-1593-y