ORIGINAL ARTICLE: Qualitatively distinct patterns of cytokines are released by human dendritic cells in response to different pathogens
Dendritic cells produce cytokines that regulate the class of the adaptive immune response. Microbial recognition is mediated, at least in part, by pattern recognition receptors such as Toll-like receptors, which influence dendritic cell maturation. In humans it is not yet clear how intact pathogens...
Gespeichert in:
Veröffentlicht in: | Immunology 2005-10, Vol.116 (2), p.245-254 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dendritic cells produce cytokines that regulate the class of the adaptive immune response. Microbial recognition is mediated, at least in part, by pattern recognition receptors such as Toll-like receptors, which influence dendritic cell maturation. In humans it is not yet clear how intact pathogens modulate the developing immune response. To address the effects of intact pathogens on the maturation and effector functions of human dendritic cells, we investigated their responses to a number of microbial pathogens. We studied a range of micro-organisms including Gram-negative bacteria (Escherichia coli and Salmonella enterica sv. typhimurium), Gram-positive cocci (Staphylococcus aureus) and atypical bacteria (Mycobacterium tuberculosis and Mycoplasma hominis) as well as the human protozoal parasite Trichomonas vaginalis. The micro-organisms were fixed in formaldehyde to prevent replication whilst preserving surface morphology. All the pathogens induced similar up-regulation of dendritic cell activation-associated cell surface markers but there was a profound difference in the patterns of cytokines produced by the stimulated dendritic cells. Some pathogens (E. coli, Salmonella enterica sv. typhimurium and S. aureus) induced interleukin-12 (IL-12), IL-10 and interferon- alpha whereas others (M. tuberculosis, Mycoplasma hominis and T. vaginalis) induced only IL-10. This differential effect was not altered by costimulation of the dendritic cells through CD40. These results support the notion that human dendritic cells are plastic in their response to microbial stimuli and that the nature of the pathogen dictates the response of the dendritic cell. |
---|---|
ISSN: | 0019-2805 1365-2567 |
DOI: | 10.1111/j.1365-2567.2005.02218.x |