Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson's disease

Parkinson's disease (PD) is a neurologic disorder resulting from the loss of dopaminergic neurons in the brain. Two lines of evidence suggest that the protein alpha-synuclein plays a role in the pathogenesis of PD: Fibrillar alpha-synuclein is a major component of Lewy bodies in diseased neuron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular neuroscience 2004, Vol.23 (1-2), p.23-34
Hauptverfasser: Rochet, Jean-Christophe, Outeiro, Tiago Fleming, Conway, Kelly A, Ding, Tomas T, Volles, Michael J, Lashuel, Hilal A, Bieganski, Robert M, Lindquist, Susan L, Lansbury, Peter T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parkinson's disease (PD) is a neurologic disorder resulting from the loss of dopaminergic neurons in the brain. Two lines of evidence suggest that the protein alpha-synuclein plays a role in the pathogenesis of PD: Fibrillar alpha-synuclein is a major component of Lewy bodies in diseased neurons, and two mutations in alpha-synuclein are linked to early-onset disease. Accordingly, the fibrillization of alpha-synuclein is proposed to contribute to neurodegeneration in PD. In this report, we provide evidence that oligomeric intermediates of the alpha-synuclein fibrillization pathway, termed protofibrils, might be neurotoxic. Analyses of protofibrillar alpha-synuclein by atomic force microscopy and electron microscopy indicate that the oligomers consist of spheres, chains, and rings. alpha-Synuclein protofibrils permeabilize synthetic vesicles and form pore-like assemblies on the surface of brain-derived vesicles. Dopamine reacts with alpha-synuclein to form a covalent adduct that slows the conversion of protofibrils to fibrils. This finding suggests that cytosolic dopamine in dopaminergic neurons promotes the accumulation of toxic alpha-synuclein protofibrils, which might explain why these neurons are most vulnerable to degeneration in PD. Finally, we note that aggregation of alpha-synuclein likely occurs via different mechanisms in the cell versus the test tube. For example, the binding of alpha-synuclein to cellular membranes might influence its self-assembly. To address this point, we have developed a yeast model that might enable the selection of random alpha-synuclein mutants with different membrane-binding affinities. These variants might be useful to test whether membrane binding by alpha-synuclein is necessary for neurodegeneration in transgenic animal models of PD.
ISSN:0895-8696
0895-8696
DOI:10.1385/jmn:23:1-2:023