Regulation of a renal urea transporter with reduced salinity in a marine elasmobranch, Raja erinacea

Marine elasmobranchs retain urea and other osmolytes, e.g. trimethylamine oxide (TMAO), to counterbalance the osmotic pressure of seawater. We investigated whether a renal urea transporter(s) would be regulated in response to dilution of the external environment. A 779 bp cDNA for a putative skate k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2003-09, Vol.206 (Pt 18), p.3285-3292
Hauptverfasser: Morgan, Robyn L, Ballantyne, James S, Wright, Patricia A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Marine elasmobranchs retain urea and other osmolytes, e.g. trimethylamine oxide (TMAO), to counterbalance the osmotic pressure of seawater. We investigated whether a renal urea transporter(s) would be regulated in response to dilution of the external environment. A 779 bp cDNA for a putative skate kidney urea transporter (SkUT) was cloned, sequenced and found to display relatively high identity with facilitated urea transporters from other vertebrates. Northern analysis using SkUT as a probe revealed three signals in the kidney at 3.1, 2.8 and 1.6 kb. Upon exposure to 50% seawater, the levels of all three SkUT transcripts were significantly diminished in the kidney (by 1.8- to 3.5-fold). In response to environmental dilution, renal tissue osmolality and urea concentration decreased, whereas water content increased. There were no significant differences in osmolyte and mRNA levels between the dorsal-lateral bundle and ventral sections of the kidney. Taken together, these findings provide evidence that the downregulation of SkUT may play a key role in lowering tissue urea levels in response to external osmolality.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.00554