Regulation of a renal urea transporter with reduced salinity in a marine elasmobranch, Raja erinacea
Marine elasmobranchs retain urea and other osmolytes, e.g. trimethylamine oxide (TMAO), to counterbalance the osmotic pressure of seawater. We investigated whether a renal urea transporter(s) would be regulated in response to dilution of the external environment. A 779 bp cDNA for a putative skate k...
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2003-09, Vol.206 (Pt 18), p.3285-3292 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marine elasmobranchs retain urea and other osmolytes, e.g. trimethylamine oxide (TMAO), to counterbalance the osmotic pressure of seawater. We investigated whether a renal urea transporter(s) would be regulated in response to dilution of the external environment. A 779 bp cDNA for a putative skate kidney urea transporter (SkUT) was cloned, sequenced and found to display relatively high identity with facilitated urea transporters from other vertebrates. Northern analysis using SkUT as a probe revealed three signals in the kidney at 3.1, 2.8 and 1.6 kb. Upon exposure to 50% seawater, the levels of all three SkUT transcripts were significantly diminished in the kidney (by 1.8- to 3.5-fold). In response to environmental dilution, renal tissue osmolality and urea concentration decreased, whereas water content increased. There were no significant differences in osmolyte and mRNA levels between the dorsal-lateral bundle and ventral sections of the kidney. Taken together, these findings provide evidence that the downregulation of SkUT may play a key role in lowering tissue urea levels in response to external osmolality. |
---|---|
ISSN: | 0022-0949 1477-9145 |
DOI: | 10.1242/jeb.00554 |