Role of eukaryotic translation initiation factors 3a in hypoxia-induced right ventricular remodeling of rats

Eukaryotic translation initiation factors 3a (eIF3a) is involved in regulating cell cycle, cell division, growth and differentiation. Previous studies suggest a role of eIF3a on fibrosis disease and cellular proliferation and differentiation of fibroblasts. The present study aims to investigate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2016-01, Vol.144, p.61-68
Hauptverfasser: Li, Wen-Qun, Li, Xiao-Hui, Wu, Yue-Han, Du, Jie, Wang, Ai-Ping, Li, Dai, Li, Yuan-Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eukaryotic translation initiation factors 3a (eIF3a) is involved in regulating cell cycle, cell division, growth and differentiation. Previous studies suggest a role of eIF3a on fibrosis disease and cellular proliferation and differentiation of fibroblasts. The present study aims to investigate the role of eIF3a on hypoxia-induced right ventricular (RV) remodeling and underlying mechanism. RV remodeling was induced by hypoxia (10% O2, 3weeks) in rats. Primary cardiac fibroblasts were cultured in vitro and their proliferation was investigated by MTS and EdU incorporation method. eIF3a knockdown was conducted by eIF3a siRNA. The expression/level of TGF-β1, eIF3a, p27 and α-SMA, collagen-I, collagen-III, ANP and BNP were analyzed by ELISA, real-time PCR or Western blot. The expression of eIF3a was obviously increased in right ventricle of RV remodeling rats accompanied by up-regulation of α-SMA and collagens. In cultured cardiac fibroblasts, application of exogenous TGF-β1-induced cellular proliferation and differentiation concomitantly with up-regulation of eIF3a expression and down-regulation of p27 expression. The effects of TGF-β1-induced proliferation and up-regulation of α-SMA and collagen in cardiac fibroblasts were abolished by eIF3a siRNA. eIF3a siRNA reversed TGF-β1 induced down-regulation of p27 expression. The eIF3a plays a crucial role in hypoxia-induced RV remodeling by regulating TGF-β1-induced proliferation and differentiation of cardiac fibroblasts, which is mediated via eIF3a/p27 pathway.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2015.11.020