A Note on Counting Homomorphisms of Paths
We obtain two identities and an explicit formula for the number of homomorphisms of a finite path into a finite path. For the number of endomorphisms of a finite path these give over-count and under-count identities yielding the closed-form formulae of Myers. We also derive finite Laurent series as...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2014, Vol.30 (1), p.159-170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain two identities and an explicit formula for the number of homomorphisms of a finite path into a finite path. For the number of endomorphisms of a finite path these give over-count and under-count identities yielding the closed-form formulae of Myers. We also derive finite Laurent series as generating functions which count homomorphisms of a finite path into any path, finite or infinite. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-012-1261-0 |