High temperature continuous flow synthesis of CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS nanocrystals

Continuous flow reactors show great promise for large-scale synthesis of quantum dots. Here, we discuss results for the synthesis of multi-layered Cd-based hybrid nanocrystals - CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS - in a continuous flow reactor. The simple reactor design and liquid-phase chemistry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2015-10, Vol.7 (38), p.15895-15903
Hauptverfasser: Naughton, Matt S, Kumar, Vivek, Bonita, Yolanda, Deshpande, Kishori, Kenis, Paul J A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Continuous flow reactors show great promise for large-scale synthesis of quantum dots. Here, we discuss results for the synthesis of multi-layered Cd-based hybrid nanocrystals - CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS - in a continuous flow reactor. The simple reactor design and liquid-phase chemistry obviate the need for preheating or in-line mixing, and the chosen reactor dimensions and operating conditions allow for high flow rates (∼10 mL min(-1)). Additionally, the simple reactor design is well suited for scale-up. The CdSe/CdS/ZnS particles synthesized at elevated temperatures in the reactor exhibit quantum yields of over 60% at longer wavelengths (red region). The shell growth for these particles is conducted without the need for complex dropwise addition or SILAR shell growth procedures used in batch reactors. CdS-based particles were shown to have a higher performance when using octadecene-S instead of TOP-S, which improved the quality of shell growth. In addition, stoichiometric synthesis of the alternate CdSeS/ZnS alloy particles was conducted, removing the need for a large excess of S to offset the lower S reactivity. CdSeS/ZnS alloy nanoparticles exhibit quantum yields of about 50% in the intermediate wavelength range (500-600 nm).
ISSN:2040-3364
2040-3372
DOI:10.1039/c5nr04510j