Radio-frequency transistors from millimeter-scale graphene domains
Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF fie...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2014-11, Vol.23 (11), p.470-475 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene is a new promising candidate for application in radio-frequency (RF) electronics due to its excellent elec- tronic properties such as ultrahigh carrier mobility, large threshold current density, and high saturation velocity. Recently, much progress has been made in the graphene-based RF field-effect transistors (RF-FETs). Here we present for the first time the high-performance top-gated RF transistors using millimeter-scale single graphene domain on a SiO2/Si substrate through a conventional microfabrication process. A maximum cut-off frequency of 178 GHz and a peak maximum os- cillation frequency of 35 GHz are achieved in the graphene-domain-based FET with a gate length of 50 nm and 150 nm, respectively. This work shows that the millimeter-scale single graphene domain has great potential applications in RF devices and circuits. |
---|---|
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/23/11/117201 |