A radial non-uniform helicon equilibrium discharge model

Helicon discharges have attracted great attention in the electric propulsion community in recent years. To acquire the equilibrium properties, a self-consistent model is developed, which combines the helicon/Trivelpiece-Gould (TG) waves- plasma interaction mechanism and the plasma flow theory under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2014-10, Vol.23 (10), p.342-348
1. Verfasser: 成玉国 程谋森 王墨戈 李小康
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Helicon discharges have attracted great attention in the electric propulsion community in recent years. To acquire the equilibrium properties, a self-consistent model is developed, which combines the helicon/Trivelpiece-Gould (TG) waves- plasma interaction mechanism and the plasma flow theory under the confinement of the magnetic field. The calculations reproduce the central peak density phenomenon observed in the experiments. The results show that when operating in the wave coupling mode, high magnetic field strength B0 results in the deviation of the central density versus B0 from the linear relationship, while the density rise becomes flatter as the radiofrequency (rf) input power Prf grows, and the electron temperature Te radial profile is mainly determined by the characteristic of the rf energy deposition. The model could provide suggestions in choosing the B0 and Prf for medium power helicon thrusters.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/10/105202