Convexity and the Beta Invariant
We apply a generalization of Crapo's beta invariant to finite subsets of R super(n). For a finite subset C of the plane, we prove beta (C)=|int (C)|, where |int (C)| is the number of interior points of C, i.e., the number of points of C which are not on the boundary of the convex hull of C . Th...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 1999-10, Vol.22 (3), p.411-424 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We apply a generalization of Crapo's beta invariant to finite subsets of R super(n). For a finite subset C of the plane, we prove beta (C)=|int (C)|, where |int (C)| is the number of interior points of C, i.e., the number of points of C which are not on the boundary of the convex hull of C . This gives the following formula: capital sigma sub(K free) (-1) |K|-1 |K|=|int(C)|. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/PL00009469 |