Quantum mechanical version of the classical Liouville theorem

In terms of the coherent state evolution in phase space,we present a quantum mechanical version of the classical Liouville theorem.The evolution of the coherent state from |z〉to|sz-rz*〉 corresponds to the motion from a point z(q,p) to another point sz-rz* with |s|2-|r|2=1.The evolution is governed b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2013-03, Vol.22 (3), p.201-204
1. Verfasser: 谢传梅 范洪义
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In terms of the coherent state evolution in phase space,we present a quantum mechanical version of the classical Liouville theorem.The evolution of the coherent state from |z〉to|sz-rz*〉 corresponds to the motion from a point z(q,p) to another point sz-rz* with |s|2-|r|2=1.The evolution is governed by the so-called Fresnel operator U(s,r) that was recently proposed in quantum optics theory,which classically corresponds to the matrix optics law and the optical Fresnel transformation,and obeys group product rules.In other words,we can recapitulate the Liouville theorem in the context of quantum mechanics by virtue of coherent state evolution in phase space,which seems to be a combination of quantum statistics and quantum optics.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/3/030501