Topological Integer Additive Set-Graceful Graphs
Let N0 denote the set of all non-negative integers and X be any subset of X. Also denote the power set of X by P(X). An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(X) such that the induced function f+ : E(G) ! P(X) is defined by f+(uv) = f(u) + f(v), wher...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2015-08, Vol.123 (2), p.1-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | International journal of computer applications |
container_volume | 123 |
creator | Sudev, N K Chithra, K P Germina, K A |
description | Let N0 denote the set of all non-negative integers and X be any subset of X. Also denote the power set of X by P(X). An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(X) such that the induced function f+ : E(G) ! P(X) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sumset of f(u) and f(v). An IASL f is said to be a topological IASL (Top-IASL) if f(V (G)) [ f;g is a topology of the ground set X. An IASL is said to be an integer additive set-graceful labeling (IASGL) if for the induced edgefunction f+, f+(E(G)) = P(X)??f;; f0gg. In this paper, we study certain types of IASL of a given graph G, which is a topological integer additive set-labeling as well as an integer additive set-graceful labeling of G. |
doi_str_mv | 10.5120/ijca2015905237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753536514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3814146651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2197-eb23f782453ac8906c2ad0938217d6c1889cb25362d83473f60074d5d7103e3c3</originalsourceid><addsrcrecordid>eNpdkEFLAzEQhYMoWGqvnhe86GHrJLPZJMdStC0UPFjPIc1m2y3bZk22gv_elIqoc5nHzMfMmyHklsKYUwaPzc4aBpQr4AzFBRmAEjyXUorLX_qajGLcQQpUrFTFgMDKd771m8aaNlscerdxIZtUVdM3Hy57dX0-C8a6-thmSXTbeEOuatNGN_rOQ_L2_LSazvPly2wxnSxzy6gSuVszrIVkBUdjpYLSMlOBQsmoqEpLpVR2zTiWrJJYCKxLAFFUvBIU0KHFIXk4z92aVneh2Zvwqb1p9Hyy1KcaMFYiInzQxN6f2S7496OLvd430bq2NQfnj1FTwTGt4rRI6N0_dOeP4ZAuSVTqFwDJwJCMz5QNPsbg6h8HFPTp3_rvv_EL155ucQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1714340010</pqid></control><display><type>article</type><title>Topological Integer Additive Set-Graceful Graphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sudev, N K ; Chithra, K P ; Germina, K A</creator><creatorcontrib>Sudev, N K ; Chithra, K P ; Germina, K A</creatorcontrib><description>Let N0 denote the set of all non-negative integers and X be any subset of X. Also denote the power set of X by P(X). An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(X) such that the induced function f+ : E(G) ! P(X) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sumset of f(u) and f(v). An IASL f is said to be a topological IASL (Top-IASL) if f(V (G)) [ f;g is a topology of the ground set X. An IASL is said to be an integer additive set-graceful labeling (IASGL) if for the induced edgefunction f+, f+(E(G)) = P(X)??f;; f0gg. In this paper, we study certain types of IASL of a given graph G, which is a topological integer additive set-labeling as well as an integer additive set-graceful labeling of G.</description><identifier>ISSN: 0975-8887</identifier><identifier>ISSN: 0952-8091</identifier><identifier>EISSN: 0975-8887</identifier><identifier>EISSN: 1741-5047</identifier><identifier>DOI: 10.5120/ijca2015905237</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Additives ; Combinatorics ; Graphs ; Grounds ; Integers ; Marking ; Mathematical analysis ; Mathematical models ; Mathematics ; Topology</subject><ispartof>International journal of computer applications, 2015-08, Vol.123 (2), p.1-4</ispartof><rights>Copyright Foundation of Computer Science 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2197-eb23f782453ac8906c2ad0938217d6c1889cb25362d83473f60074d5d7103e3c3</citedby><orcidid>0000-0001-9692-4053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02263330$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sudev, N K</creatorcontrib><creatorcontrib>Chithra, K P</creatorcontrib><creatorcontrib>Germina, K A</creatorcontrib><title>Topological Integer Additive Set-Graceful Graphs</title><title>International journal of computer applications</title><description>Let N0 denote the set of all non-negative integers and X be any subset of X. Also denote the power set of X by P(X). An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(X) such that the induced function f+ : E(G) ! P(X) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sumset of f(u) and f(v). An IASL f is said to be a topological IASL (Top-IASL) if f(V (G)) [ f;g is a topology of the ground set X. An IASL is said to be an integer additive set-graceful labeling (IASGL) if for the induced edgefunction f+, f+(E(G)) = P(X)??f;; f0gg. In this paper, we study certain types of IASL of a given graph G, which is a topological integer additive set-labeling as well as an integer additive set-graceful labeling of G.</description><subject>Additives</subject><subject>Combinatorics</subject><subject>Graphs</subject><subject>Grounds</subject><subject>Integers</subject><subject>Marking</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Topology</subject><issn>0975-8887</issn><issn>0952-8091</issn><issn>0975-8887</issn><issn>1741-5047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLAzEQhYMoWGqvnhe86GHrJLPZJMdStC0UPFjPIc1m2y3bZk22gv_elIqoc5nHzMfMmyHklsKYUwaPzc4aBpQr4AzFBRmAEjyXUorLX_qajGLcQQpUrFTFgMDKd771m8aaNlscerdxIZtUVdM3Hy57dX0-C8a6-thmSXTbeEOuatNGN_rOQ_L2_LSazvPly2wxnSxzy6gSuVszrIVkBUdjpYLSMlOBQsmoqEpLpVR2zTiWrJJYCKxLAFFUvBIU0KHFIXk4z92aVneh2Zvwqb1p9Hyy1KcaMFYiInzQxN6f2S7496OLvd430bq2NQfnj1FTwTGt4rRI6N0_dOeP4ZAuSVTqFwDJwJCMz5QNPsbg6h8HFPTp3_rvv_EL155ucQ</recordid><startdate>20150818</startdate><enddate>20150818</enddate><creator>Sudev, N K</creator><creator>Chithra, K P</creator><creator>Germina, K A</creator><general>Foundation of Computer Science</general><general>Inderscience</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9692-4053</orcidid></search><sort><creationdate>20150818</creationdate><title>Topological Integer Additive Set-Graceful Graphs</title><author>Sudev, N K ; Chithra, K P ; Germina, K A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2197-eb23f782453ac8906c2ad0938217d6c1889cb25362d83473f60074d5d7103e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Additives</topic><topic>Combinatorics</topic><topic>Graphs</topic><topic>Grounds</topic><topic>Integers</topic><topic>Marking</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudev, N K</creatorcontrib><creatorcontrib>Chithra, K P</creatorcontrib><creatorcontrib>Germina, K A</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudev, N K</au><au>Chithra, K P</au><au>Germina, K A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Integer Additive Set-Graceful Graphs</atitle><jtitle>International journal of computer applications</jtitle><date>2015-08-18</date><risdate>2015</risdate><volume>123</volume><issue>2</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0975-8887</issn><issn>0952-8091</issn><eissn>0975-8887</eissn><eissn>1741-5047</eissn><abstract>Let N0 denote the set of all non-negative integers and X be any subset of X. Also denote the power set of X by P(X). An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(X) such that the induced function f+ : E(G) ! P(X) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sumset of f(u) and f(v). An IASL f is said to be a topological IASL (Top-IASL) if f(V (G)) [ f;g is a topology of the ground set X. An IASL is said to be an integer additive set-graceful labeling (IASGL) if for the induced edgefunction f+, f+(E(G)) = P(X)??f;; f0gg. In this paper, we study certain types of IASL of a given graph G, which is a topological integer additive set-labeling as well as an integer additive set-graceful labeling of G.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/ijca2015905237</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9692-4053</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2015-08, Vol.123 (2), p.1-4 |
issn | 0975-8887 0952-8091 0975-8887 1741-5047 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753536514 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Additives Combinatorics Graphs Grounds Integers Marking Mathematical analysis Mathematical models Mathematics Topology |
title | Topological Integer Additive Set-Graceful Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Integer%20Additive%20Set-Graceful%20Graphs&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Sudev,%20N%20K&rft.date=2015-08-18&rft.volume=123&rft.issue=2&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/ijca2015905237&rft_dat=%3Cproquest_hal_p%3E3814146651%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1714340010&rft_id=info:pmid/&rfr_iscdi=true |