Topological Integer Additive Set-Graceful Graphs
Let N0 denote the set of all non-negative integers and X be any subset of X. Also denote the power set of X by P(X). An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(X) such that the induced function f+ : E(G) ! P(X) is defined by f+(uv) = f(u) + f(v), wher...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2015-08, Vol.123 (2), p.1-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let N0 denote the set of all non-negative integers and X be any subset of X. Also denote the power set of X by P(X). An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(X) such that the induced function f+ : E(G) ! P(X) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sumset of f(u) and f(v). An IASL f is said to be a topological IASL (Top-IASL) if f(V (G)) [ f;g is a topology of the ground set X. An IASL is said to be an integer additive set-graceful labeling (IASGL) if for the induced edgefunction f+, f+(E(G)) = P(X)??f;; f0gg. In this paper, we study certain types of IASL of a given graph G, which is a topological integer additive set-labeling as well as an integer additive set-graceful labeling of G. |
---|---|
ISSN: | 0975-8887 0952-8091 0975-8887 1741-5047 |
DOI: | 10.5120/ijca2015905237 |