Readout chip for an L1 tracking trigger using asynchronous logic
Adding a silicon based tracker to the level 1 trigger systems for LHC detectors can substantially increase the ability of these systems to find events with patterns of high Pt tracks. This is especially true for high luminosity running where there may be several hundred interactions per crossing. Co...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2012-08, Vol.7 (8), p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Journal of instrumentation |
container_volume | 7 |
creator | Hoff, J Johnson, M Lipton, R Magazzu, G |
description | Adding a silicon based tracker to the level 1 trigger systems for LHC detectors can substantially increase the ability of these systems to find events with patterns of high Pt tracks. This is especially true for high luminosity running where there may be several hundred interactions per crossing. Cooling and mass constraints require that the readout chips have low power and generate little electrical noise. The LHC crossing clock and experiment trigger latency requires that a trigger be able to be made in less than 100 LHC crossings of 25 ns each. One way to minimize power and noise is to use asynchronous logic. We present a readout chip design for both level 1 trigger and event readout that is entirely asynchronous. The only clock used is the LHC crossing clock. |
doi_str_mv | 10.1088/1748-0221/7/08/C08004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753535791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448708363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-f40c061b9d5627f8e4f837c5a4dba0b9eae1433745bd13e26f9a3f25c9da406b3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCFHL7WT5rM3ZdFVWBBEzyFNk26126xJe9h_b8uKeJM5zDvDwzA8CF0TuCWgVE4kUxkUBcllDipfgQJgJ2jxuz_9k8_RRUofALzkDBbo7tWZOowDttt2j32I2PR4Q_AQjf1s-2YKbdO4iMc0TyYderuNoQ9jwl1oWnuJzrzpkrv66Uv0_vjwtnrKNi_r59X9JrNUiCHzDCwIUpU1F4X0yjGvqLTcsLoyUJXOOMIolYxXNaGuEL401BfclrVhICq6RDfHu_sYvkaXBr1rk3VdZ3o3PaOJ5HQqWZL_UcaUBEUFnVB-RG0MKUXn9T62OxMPmoCe5epZnJ7FaalB6aNc-g2c82wH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448708363</pqid></control><display><type>article</type><title>Readout chip for an L1 tracking trigger using asynchronous logic</title><source>Institute of Physics Journals</source><creator>Hoff, J ; Johnson, M ; Lipton, R ; Magazzu, G</creator><creatorcontrib>Hoff, J ; Johnson, M ; Lipton, R ; Magazzu, G</creatorcontrib><description>Adding a silicon based tracker to the level 1 trigger systems for LHC detectors can substantially increase the ability of these systems to find events with patterns of high Pt tracks. This is especially true for high luminosity running where there may be several hundred interactions per crossing. Cooling and mass constraints require that the readout chips have low power and generate little electrical noise. The LHC crossing clock and experiment trigger latency requires that a trigger be able to be made in less than 100 LHC crossings of 25 ns each. One way to minimize power and noise is to use asynchronous logic. We present a readout chip design for both level 1 trigger and event readout that is entirely asynchronous. The only clock used is the LHC crossing clock.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/7/08/C08004</identifier><language>eng</language><subject>Chips ; Clocks ; Design engineering ; Electric power generation ; Instrumentation ; Logic ; Running ; Tracking</subject><ispartof>Journal of instrumentation, 2012-08, Vol.7 (8), p.1-8</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-f40c061b9d5627f8e4f837c5a4dba0b9eae1433745bd13e26f9a3f25c9da406b3</citedby><cites>FETCH-LOGICAL-c366t-f40c061b9d5627f8e4f837c5a4dba0b9eae1433745bd13e26f9a3f25c9da406b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hoff, J</creatorcontrib><creatorcontrib>Johnson, M</creatorcontrib><creatorcontrib>Lipton, R</creatorcontrib><creatorcontrib>Magazzu, G</creatorcontrib><title>Readout chip for an L1 tracking trigger using asynchronous logic</title><title>Journal of instrumentation</title><description>Adding a silicon based tracker to the level 1 trigger systems for LHC detectors can substantially increase the ability of these systems to find events with patterns of high Pt tracks. This is especially true for high luminosity running where there may be several hundred interactions per crossing. Cooling and mass constraints require that the readout chips have low power and generate little electrical noise. The LHC crossing clock and experiment trigger latency requires that a trigger be able to be made in less than 100 LHC crossings of 25 ns each. One way to minimize power and noise is to use asynchronous logic. We present a readout chip design for both level 1 trigger and event readout that is entirely asynchronous. The only clock used is the LHC crossing clock.</description><subject>Chips</subject><subject>Clocks</subject><subject>Design engineering</subject><subject>Electric power generation</subject><subject>Instrumentation</subject><subject>Logic</subject><subject>Running</subject><subject>Tracking</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCFHL7WT5rM3ZdFVWBBEzyFNk26126xJe9h_b8uKeJM5zDvDwzA8CF0TuCWgVE4kUxkUBcllDipfgQJgJ2jxuz_9k8_RRUofALzkDBbo7tWZOowDttt2j32I2PR4Q_AQjf1s-2YKbdO4iMc0TyYderuNoQ9jwl1oWnuJzrzpkrv66Uv0_vjwtnrKNi_r59X9JrNUiCHzDCwIUpU1F4X0yjGvqLTcsLoyUJXOOMIolYxXNaGuEL401BfclrVhICq6RDfHu_sYvkaXBr1rk3VdZ3o3PaOJ5HQqWZL_UcaUBEUFnVB-RG0MKUXn9T62OxMPmoCe5epZnJ7FaalB6aNc-g2c82wH</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Hoff, J</creator><creator>Johnson, M</creator><creator>Lipton, R</creator><creator>Magazzu, G</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>20120801</creationdate><title>Readout chip for an L1 tracking trigger using asynchronous logic</title><author>Hoff, J ; Johnson, M ; Lipton, R ; Magazzu, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-f40c061b9d5627f8e4f837c5a4dba0b9eae1433745bd13e26f9a3f25c9da406b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chips</topic><topic>Clocks</topic><topic>Design engineering</topic><topic>Electric power generation</topic><topic>Instrumentation</topic><topic>Logic</topic><topic>Running</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoff, J</creatorcontrib><creatorcontrib>Johnson, M</creatorcontrib><creatorcontrib>Lipton, R</creatorcontrib><creatorcontrib>Magazzu, G</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoff, J</au><au>Johnson, M</au><au>Lipton, R</au><au>Magazzu, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Readout chip for an L1 tracking trigger using asynchronous logic</atitle><jtitle>Journal of instrumentation</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>7</volume><issue>8</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>Adding a silicon based tracker to the level 1 trigger systems for LHC detectors can substantially increase the ability of these systems to find events with patterns of high Pt tracks. This is especially true for high luminosity running where there may be several hundred interactions per crossing. Cooling and mass constraints require that the readout chips have low power and generate little electrical noise. The LHC crossing clock and experiment trigger latency requires that a trigger be able to be made in less than 100 LHC crossings of 25 ns each. One way to minimize power and noise is to use asynchronous logic. We present a readout chip design for both level 1 trigger and event readout that is entirely asynchronous. The only clock used is the LHC crossing clock.</abstract><doi>10.1088/1748-0221/7/08/C08004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2012-08, Vol.7 (8), p.1-8 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753535791 |
source | Institute of Physics Journals |
subjects | Chips Clocks Design engineering Electric power generation Instrumentation Logic Running Tracking |
title | Readout chip for an L1 tracking trigger using asynchronous logic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Readout%20chip%20for%20an%20L1%20tracking%20trigger%20using%20asynchronous%20logic&rft.jtitle=Journal%20of%20instrumentation&rft.au=Hoff,%20J&rft.date=2012-08-01&rft.volume=7&rft.issue=8&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/7/08/C08004&rft_dat=%3Cproquest_cross%3E1448708363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448708363&rft_id=info:pmid/&rfr_iscdi=true |