Readout chip for an L1 tracking trigger using asynchronous logic

Adding a silicon based tracker to the level 1 trigger systems for LHC detectors can substantially increase the ability of these systems to find events with patterns of high Pt tracks. This is especially true for high luminosity running where there may be several hundred interactions per crossing. Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2012-08, Vol.7 (8), p.1-8
Hauptverfasser: Hoff, J, Johnson, M, Lipton, R, Magazzu, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adding a silicon based tracker to the level 1 trigger systems for LHC detectors can substantially increase the ability of these systems to find events with patterns of high Pt tracks. This is especially true for high luminosity running where there may be several hundred interactions per crossing. Cooling and mass constraints require that the readout chips have low power and generate little electrical noise. The LHC crossing clock and experiment trigger latency requires that a trigger be able to be made in less than 100 LHC crossings of 25 ns each. One way to minimize power and noise is to use asynchronous logic. We present a readout chip design for both level 1 trigger and event readout that is entirely asynchronous. The only clock used is the LHC crossing clock.
ISSN:1748-0221
1748-0221
DOI:10.1088/1748-0221/7/08/C08004