Materials interface engineering for solution-processed photovoltaics

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2012-08, Vol.488 (7411), p.304-312
Hauptverfasser: Graetzel, Michael, Janssen, René A. J., Mitzi, David B., Sargent, Edward H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their solar-power conversion efficiencies. The nanometre (electron) and micrometre (photon) scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport. These interfaces include large surface area junctions between photoelectron donors and acceptors, the intralayer grain boundaries within the absorber, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature11476