Catalytic Mechanism of Angiotensin-Converting Enzyme and Effects of the Chloride Ion
The angiotensin-converting enzyme (ACE) exhibits critical functions in the conversion of angiotensin I to angiotensin II and the degradation of bradykinin and other vasoactive peptides. As a result, the ACE inhibition has become a promising approach in the treatment of hypertension, heart failure, a...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2013-06, Vol.117 (22), p.6635-6645 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The angiotensin-converting enzyme (ACE) exhibits critical functions in the conversion of angiotensin I to angiotensin II and the degradation of bradykinin and other vasoactive peptides. As a result, the ACE inhibition has become a promising approach in the treatment of hypertension, heart failure, and diabetic nephropathy. Extending our recent molecular dynamics simulation of the testis ACE in complex with a bona fide substrate molecule, hippuryl-histidyl-leucine, we presented here a detailed investigation of the hydrolytic process and possible influences of the chloride ion on the reaction using a combined quantum mechanical and molecule mechanical method. Similar to carboxypeptidase A and thermolysin, the promoted water mechanism is established for the catalysis of ACE. The E384 residue was found to have the dual function of a general base for activating the water nucleophile and a general acid for facilitating the cleavage of amide C–N bond. Consistent with experimental observations, the chloride ion at the second binding position is found to accelerate the reaction rate presumably due to the long-range electrostatic interactions but has little influence on the overall substrate binding characteristics. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp400974n |