Tuning catalytic selectivity of liquid-phase hydrogenation of furfural via synergistic effects of supported bimetallic catalysts
•Selectivity of furfural hydrogenation is tuned via bimetallic synergistic effect.•Total hydrogenation is facilely achieved over Ni–Pd (5:1)/TiO2–ZrO2.•Ni–Pd synergistic effect works in a hydrogen transfer mechanism.•Pt–Re bimetallic catalyst is highly active for partial hydrogenation. Bimetallic ca...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. A, General General, 2015-07, Vol.500, p.23-29 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Selectivity of furfural hydrogenation is tuned via bimetallic synergistic effect.•Total hydrogenation is facilely achieved over Ni–Pd (5:1)/TiO2–ZrO2.•Ni–Pd synergistic effect works in a hydrogen transfer mechanism.•Pt–Re bimetallic catalyst is highly active for partial hydrogenation.
Bimetallic catalysts supported over TiO2–ZrO2 binary oxides were prepared by co-impregnation methods and used for catalyzing liquid-phase hydrogenation of furfural. Highly selective hydrogenation catalysts can be developed based on bimetallic synergistic effect. The coexistence of small proportion of palladium with supported nickel species greatly improves the catalytic performance and transfer the reaction selectivity from partial hydrogenation to total hydrogenation. The catalyst with Ni–Pd mole ratio of 5:1 shows the best performance. The yield of tetrahydrofurfuryl alcohol (THFA) reaches 93.4%. Ni–Pd synergistic effect is interpreted through XPS measurement and a hydrogen-transfer mechanism is proposed. Pt–Re bimetallic catalyst is an excellent partial hydrogenation catalyst for furfural conversion. Furfural can be totally converted and the selectivity of partial hydrogenation product (FA) reaches 95.7%. When rhenium oxide species are located on the Pt surface, the hydrogen species on Pt are transferred to adsorbed CO bond to achieve selective hydrogenation. |
---|---|
ISSN: | 0926-860X 1873-3875 |
DOI: | 10.1016/j.apcata.2015.05.006 |