Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene

The near-field interaction between fluorescent emitters and graphene exhibits rich physics associated with local dipole-induced electromagnetic fields that are strongly enhanced due to the unique properties of graphene. Here, we measure emitter lifetimes as a function of emitter-graphene distance d,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2013-05, Vol.13 (5), p.2030-2035
Hauptverfasser: Gaudreau, L, Tielrooij, K. J, Prawiroatmodjo, G. E. D. K, Osmond, J, de Abajo, F. J. García, Koppens, F. H. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The near-field interaction between fluorescent emitters and graphene exhibits rich physics associated with local dipole-induced electromagnetic fields that are strongly enhanced due to the unique properties of graphene. Here, we measure emitter lifetimes as a function of emitter-graphene distance d, and find agreement with a universal scaling law, governed by the fine-structure constant. The observed energy transfer rate is in agreement with a 1/d 4 dependence that is characteristic of two-dimensional lossy media. The emitter decay rate is enhanced 90 times (energy transfer efficiency of ∼99%) with respect to the decay in vacuum at distances d ≈ 5 nm. This high energy transfer rate is mainly due to the two-dimensionality and gapless character of the monatomic carbon layer. Graphene is thus shown to be an extraordinary energy sink, holding great potential for photodetection, energy harvesting, and nanophotonics.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl400176b