Effect of Plastic Anisotropy on the Strain Rate Intensity Factor: A Simple Analytic Solution
Solutions for many rigid/plastic models are singular in the vicinity of maximum friction surfaces. In particular, the magnitude of the equivalent strain rate near such surfaces is controlled by the strain rate intensity factor. This factor is the coefficient of the leading singular term is a series...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2014-08, Vol.626, p.240-245 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solutions for many rigid/plastic models are singular in the vicinity of maximum friction surfaces. In particular, the magnitude of the equivalent strain rate near such surfaces is controlled by the strain rate intensity factor. This factor is the coefficient of the leading singular term is a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since the equivalent strain rate has a great effect of material properties, it is of important to reveal the dependence of the strain rate intensity factor on parameters characterizing material models. In the present paper, quite a general model of anisotropic plasticity under plane strain conditions is adopted. Then, using an analytic solution for instantaneous compression of a layer of plastic material between two parallel plates the effect of the shape of the yield locus on the asymptotic behavior of the equivalent strain rate in the vicinity of the friction surface is demonstrated. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.626.240 |