Characteristics of Visible Fluorescence from Ionic Liquids

The observation of fluorescence in the visible spectral range in imidazolium-based ionic liquids, in which the peak of the fluorescence spectrum shifts with the change in the excitation wavelength by over 200 nm, was reported by Samanta and co-workers ( Paul et al. J. Phys. Chem. B 2005, 109, 9148;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2013-09, Vol.117 (37), p.10818-10825
Hauptverfasser: Cha, Seoncheol, Shim, Taekyu, Ouchi, Yukio, Kim, Doseok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The observation of fluorescence in the visible spectral range in imidazolium-based ionic liquids, in which the peak of the fluorescence spectrum shifts with the change in the excitation wavelength by over 200 nm, was reported by Samanta and co-workers ( Paul et al. J. Phys. Chem. B 2005, 109, 9148; Chem. Phys. Lett. 2005, 402, 375 ), and the aggregate structure in the bulk ionic liquid was suggested to explain this unique phenomenon. In this work, by employing 2D-scan fluorescence spectroscopy, we identified the long- and short-wavelength fluorescence components of the fluorescence spectrum of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]), of which only the long-wavelength fluorescence component was found to be responsible for the reported fluorescence properties. The fluorescence intensity of the long-wavelength component decreased much faster upon dilution in aqueous mixtures than the short-wavelength component, supporting the conclusion that the long-wavelength fluorescence is from molecular aggregates in the bulk ionic liquid. Fluorescence correlation spectroscopy (FCS), which was used to accurately account for the number density of the long-wavelength fluorescent species in aqueous solutions of the ionic liquid, also suggested that the fluorescence came from aggregate structures of molecules in ionic liquids.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp4006313