Excited-State Tautomerization of Gas-Phase Cytosine

In order to investigate experimentally observed phototautomerization of gas-phase cytosine, several excited-state tautomerization mechanisms were characterized at the EOM-CCSD and TDDFT levels. All pathways that took place exclusively on the S1 surface were found to have significant barriers that we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-11, Vol.117 (46), p.12165-12174
Hauptverfasser: Triandafillou, Catherine G, Matsika, Spiridoula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to investigate experimentally observed phototautomerization of gas-phase cytosine, several excited-state tautomerization mechanisms were characterized at the EOM-CCSD and TDDFT levels. All pathways that took place exclusively on the S1 surface were found to have significant barriers that were much higher than the barriers involved in radiationless decay of cytosine tautomers through conical intersections back to the ground state; tautomerization in this fashion cannot compete with radiationless relaxation. However, an alternative possibility is that the conical intersections that facilitate radiationless decay could also facilitate tautomerization. Barrierless pathways indicate that it is energetically possible that bifurcation at the conical intersections can lead to a subset of the population reaching different tautomers. This could be an explanation for the observed tautomerization of keto cytosine after exposure to low-energy UV light.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp407758w