Tunable Surface Electron Spin Splitting with Electric Double-Layer Transistors Based on InN
Electrically manipulating electron spins based on Rashba spin–orbit coupling (SOC) is a key pathway for applications of spintronics and spin-based quantum computation. Two-dimensional electron systems (2DESs) offer a particularly important SOC platform, where spin polarization can be tuned with an e...
Gespeichert in:
Veröffentlicht in: | Nano letters 2013-05, Vol.13 (5), p.2024-2029 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrically manipulating electron spins based on Rashba spin–orbit coupling (SOC) is a key pathway for applications of spintronics and spin-based quantum computation. Two-dimensional electron systems (2DESs) offer a particularly important SOC platform, where spin polarization can be tuned with an electric field perpendicular to the 2DES. Here, by measuring the tunable circular photogalvanic effect (CPGE), we present a room-temperature electric-field-modulated spin splitting of surface electrons on InN epitaxial thin films that is a good candidate to realize spin injection. The surface band bending and resulting CPGE current are successfully modulated by ionic liquid gating within an electric double-layer transistor configuration. The clear gate voltage dependence of CPGE current indicates that the spin splitting of the surface electron accumulation layer is effectively tuned, providing a way to modulate the injected spin polarization in potential spintronic devices. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl400153p |