Case of the Missing Isomer: Pathways for Molecular Elimination in the Photoinduced Decomposition of 1,1-Dibromoethane
We report an experimental and computational study of the photodecomposition pathways of a prototypical gem-dihalide, 1,1-dibromoethane (1,1-EDB), in the condensed phase. Following photolysis of the matrix isolated parent compound in Ar at 5 K, photoproducts are observed corresponding to Br2 eliminat...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-11, Vol.117 (46), p.11915-11923 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report an experimental and computational study of the photodecomposition pathways of a prototypical gem-dihalide, 1,1-dibromoethane (1,1-EDB), in the condensed phase. Following photolysis of the matrix isolated parent compound in Ar at 5 K, photoproducts are observed corresponding to Br2 elimination (+ C2H4 or C2H2) and HBr elimination (+ vinyl bromide). The elimination products are observed in the matrix as complexes. In contrast to our recent studies of the photolysis of matrix isolated polyhalomethanes, no evidence for the iso-1,1-EDB species is found, although studies of the matrix isolated 1,1-dibromo-2,2,2-trifluoroethane analogue show that the isomer is the dominant photoproduct. These results are examined in the light of theoretical studies that have characterized in detail the 1,1-EDB potential energy surface (PES). For Br2 elimination, a pathway from the isomer on the singlet PES is found which involves a simultaneous Br2 loss with 1,2-hydrogen shift; this pathway lies lower in energy than a concerted three-center elimination from the parent 1,1-EDB. For HBr elimination, our previous theoretical studies [Kalume, A.; George, L.; Cunningham, N.; Reid, S. A. Chem. Phys. Lett. 2013, 556, 35–38] have demonstrated the existence of concerted (single-step) and sequential pathways that involve coupled proton and electron transfer, with the sequential pathway involving the isomer as an intermediate. Here, more extensive computational results argue against a simple radical abstraction pathway for this process, and we compare experimental and computational results to prior results from the photolysis of the structural isomer, 1,2-EDB. These steady-state experiments set the stage for ultrafast studies of the dynamics of this system, which will be important in unraveling the complex photodecomposition pathways operative in condensed phases. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp403114s |