Spectral properties of a nonlocal problem for a second-order differential equation with an involution

For the equation αu ″(- x ) - u ″( x ) = λu( x ), ™1 < x < 1, where α ∈ (™1, 1), we study the problem with the nonlocal conditions u(™1) = 0, u′(™1) = u′(1). We show that if is irrational, then the system of eigenfunctions is complete and minimal in L 2 (™1, 1) but is not a basis. For rational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2015-08, Vol.51 (8), p.984-990
Hauptverfasser: Kritskov, L. V., Sarsenbi, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the equation αu ″(- x ) - u ″( x ) = λu( x ), ™1 < x < 1, where α ∈ (™1, 1), we study the problem with the nonlocal conditions u(™1) = 0, u′(™1) = u′(1). We show that if is irrational, then the system of eigenfunctions is complete and minimal in L 2 (™1, 1) but is not a basis. For rational r , we indicate a method for choosing associated functions for which the system of root functions of the problem is an unconditional basis in L 2 (™1, 1).
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266115080029