Spectral properties of a nonlocal problem for a second-order differential equation with an involution
For the equation αu ″(- x ) - u ″( x ) = λu( x ), ™1 < x < 1, where α ∈ (™1, 1), we study the problem with the nonlocal conditions u(™1) = 0, u′(™1) = u′(1). We show that if is irrational, then the system of eigenfunctions is complete and minimal in L 2 (™1, 1) but is not a basis. For rational...
Gespeichert in:
Veröffentlicht in: | Differential equations 2015-08, Vol.51 (8), p.984-990 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the equation
αu
″(-
x
) -
u
″(
x
) = λu(
x
), ™1 < x < 1, where
α
∈ (™1, 1), we study the problem with the nonlocal conditions u(™1) = 0, u′(™1) = u′(1). We show that if
is irrational, then the system of eigenfunctions is complete and minimal in
L
2
(™1, 1) but is not a basis. For rational
r
, we indicate a method for choosing associated functions for which the system of root functions of the problem is an unconditional basis in
L
2
(™1, 1). |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266115080029 |