A Computational Approach for Designing a Universal Epitope-Based Peptide Vaccine Against Nipah Virus
Nipah virus (NiV) is highly pathogenic single-stranded negative sense RNA virus. It can cause severe encephalitis and respiratory disease in humans. In addition, NiV infects a large range of host including mammals. As a result of its higher zoonotic potential and pathogenicity for human, it has been...
Gespeichert in:
Veröffentlicht in: | Interdisciplinary sciences : computational life sciences 2015-06, Vol.7 (2), p.177-185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nipah virus (NiV) is highly pathogenic single-stranded negative sense RNA virus. It can cause severe encephalitis and respiratory disease in humans. In addition, NiV infects a large range of host including mammals. As a result of its higher zoonotic potential and pathogenicity for human, it has been rated as an alert in recent days. A therapeutic treatment or vaccines has become elusive to fight against this virus. In this study, the attachment (G) and fusion (F) glycoproteins of NiV, responsible for the viral attachment and entry to the host cell, were selected to develop epitope-based vaccine against Nipah virus. Epitopes were identified from the conserved region of G and F protein of NiV. Both B-cell and T-cell immunity were checked to affirm it that these epitopes will be able to induce humoral and cellular immunity. A total of 6 T-cell epitopes and 19 significant HLA–epitope interactions were identified. Eventually it has shown an acceptable percentage in population coverage (46.45 %) and efficient binding with HLA molecule by molecular docking study. |
---|---|
ISSN: | 1913-2751 1867-1462 |
DOI: | 10.1007/s12539-015-0023-0 |