Origami-Inspired Printed Robots

Robot manufacturing is currently highly specialized, time consuming, and expensive, limiting accessibility and customization. Existing rapid prototyping techniques (e.g., 3-D printing) can achieve complex geometries and are becoming increasingly accessible; however, they are limited to one or two ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2015-10, Vol.20 (5), p.2214-2221
Hauptverfasser: Onal, Cagdas D., Tolley, Michael T., Wood, Robert J., Rus, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Robot manufacturing is currently highly specialized, time consuming, and expensive, limiting accessibility and customization. Existing rapid prototyping techniques (e.g., 3-D printing) can achieve complex geometries and are becoming increasingly accessible; however, they are limited to one or two materials and cannot seamlessly integrate active components. We propose an alternative approach called printable robots that takes advantage of available planar fabrication methods to create integrated electromechanical laminates that are subsequently folded into functional 3-D machines employing origami-inspired techniques. We designed, fabricated, and tested prototype origami robots to address the canonical robotics challenges of mobility and manipulation, and subsequently combined these designs to generate a new, multifunctional machine. The speed of the design and manufacturing process as well as the ease of composing designs create a new paradigm in robotic development, which has the promise to democratize access to customized robots for industrial, home, and educational use.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2014.2369854