Using combined evidence from replicates to evaluate ChIP-seq peaks

Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) detects genome-wide DNA-protein interactions and chromatin modifications, returning enriched regions (ERs), usually associated with a significance score. Moderately significant interactions can correspond to true, weak interactions, or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2015-09, Vol.31 (17), p.2761-2769
Hauptverfasser: Jalili, Vahid, Matteucci, Matteo, Masseroli, Marco, Morelli, Marco J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) detects genome-wide DNA-protein interactions and chromatin modifications, returning enriched regions (ERs), usually associated with a significance score. Moderately significant interactions can correspond to true, weak interactions, or to false positives; replicates of a ChIP-seq experiment can provide co-localised evidence to decide between the two cases. We designed a general methodological framework to rigorously combine the evidence of ERs in ChIP-seq replicates, with the option to set a significance threshold on the repeated evidence and a minimum number of samples bearing this evidence. We applied our method to Myc transcription factor ChIP-seq datasets in K562 cells available in the ENCODE project. Using replicates, we could extend up to 3 times the ER number with respect to single-sample analysis with equivalent significance threshold. We validated the 'rescued' ERs by checking for the overlap with open chromatin regions and for the enrichment of the motif that Myc binds with strongest affinity; we compared our results with alternative methods (IDR and jMOSAiCS), obtaining more validated peaks than the former and less peaks than latter, but with a better validation. An implementation of the proposed method and its source code under GPLv3 license are freely available at http://www.bioinformatics.deib.polimi.it/MSPC/ and http://mspc.codeplex.com/, respectively. marco.morelli@iit.it Supplementary Material are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
1460-2059
DOI:10.1093/bioinformatics/btv293