An American on Paris: Extent of aqueous alteration of a CM chondrite and the petrography of its refractory and amoeboid olivine inclusions

Paris is the least aqueously altered CM chondrite identified to date, classified as subtype 2.7; however, literature data indicate that some regions of this apparently brecciated meteorite may be subtype 2.9. The suite of CAIs in Paris includes 19% spinel–pyroxene inclusions, 19% spinel inclusions,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2015-09, Vol.50 (9), p.1595-1612
1. Verfasser: Rubin, Alan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Paris is the least aqueously altered CM chondrite identified to date, classified as subtype 2.7; however, literature data indicate that some regions of this apparently brecciated meteorite may be subtype 2.9. The suite of CAIs in Paris includes 19% spinel–pyroxene inclusions, 19% spinel inclusions, 8% spinel–pyroxene–olivine inclusions, 43% pyroxene inclusions, 8% pyroxene–olivine inclusions, and 3% hibonite‐bearing inclusions. Both simple and complex inclusions are present; some have nodular, banded, or distended structures. No melilite was identified in any of the inclusions in the present suite, but other recent studies have found a few rare occurrences of melilite in Paris CAIs. Because melilite is highly susceptible to aqueous alteration, it is likely that it was mostly destroyed during early‐stage parent‐body alteration. Two of the CAIs in this study are part of compound CAI–chondrule objects. Their presence suggests that there were transient heating events (probably associated with chondrule formation) in the nebula after chondrules and CAIs were admixed. Also present in Paris are a few amoeboid olivine inclusions (AOI) consisting of relatively coarse forsterite rims surrounding fine‐grained, porous zones containing diopside and anorthite. The interior regions of the AOIs may represent fine‐grained rimless CAIs that were incorporated into highly porous forsterite‐rich dustballs. These assemblages were heated by an energy pulse that collapsed and coarsened their rims, but failed to melt their interiors.
ISSN:1086-9379
1945-5100
DOI:10.1111/maps.12482