Semiconducting Cross-Linked Polymer Nanowires Prepared by High-Energy Single-Particle Track Reactions

High-energy charged particle irradiation of cross-linking polymers gives nanowires formed by cross-linking reactions along the ion track trajectories. Here, the direct formation of nanowires consisting of a conjugated polymer by single-particle nanofabrication technique (SPNT) is investigated. Poly(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2012-10, Vol.116 (42), p.12857-12863
Hauptverfasser: Seki, Shu, Saeki, Akinori, Choi, Wookjin, Maeyoshi, Yuta, Omichi, Masaki, Asano, Atsushi, Enomoto, Kazuyuki, Vijayakumar, Chakkooth, Sugimoto, Masaki, Tsukuda, Satoshi, Tanaka, Shun-ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-energy charged particle irradiation of cross-linking polymers gives nanowires formed by cross-linking reactions along the ion track trajectories. Here, the direct formation of nanowires consisting of a conjugated polymer by single-particle nanofabrication technique (SPNT) is investigated. Poly(9,9′-di-n-octylfluorene) (PFO), regioregular poly(3-hexylthiophene) (rrP3HT), and poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) underwent an efficient cross-linking reaction upon irradiation, resulting in the formation of 1-dimensional nanostructures with high and desired aspect ratio reaching up to ∼200. The size of nanowires was perfectly interpreted by well-sophisticated theoretical aspects based on the statistical theory of polymer backbone configurations, suggesting that simple cross-linking reactions of the polymers determine the size and structure of nanowires. PFO based nanostructures exhibited sharp and intense emission with high fluorescence quantum yield indicating the absence of any significant inter/intra polymer chromophore interactions in the nanowires assemblies.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp3069249