Observation of anatase nanograins crystallizing from anodic amorphous TiO sub(2) nanotubes

A mechanism underlying the appearance of a preferred orientation in anodized amorphous TiO sub(2) nanotube arrays (NTAs) was studied. Transmission electron microscopic analyses of preferred-oriented nanotube arrays (p-NTAs) reveal that at an optimum water content (~2 wt%), large single crystalline d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2015-09, Vol.17 (38), p.7346-7353
Hauptverfasser: Park, Ik Jae, Kim, Dong Hoe, Seong, Won Mo, Han, Byung Suh, Han, Gill Sang, Jung, Hyun Suk, Yang, Mengjin, Fan, Wen, Lee, Sangwook, Lee, Jung-Kun, Hong, Kug Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mechanism underlying the appearance of a preferred orientation in anodized amorphous TiO sub(2) nanotube arrays (NTAs) was studied. Transmission electron microscopic analyses of preferred-oriented nanotube arrays (p-NTAs) reveal that at an optimum water content (~2 wt%), large single crystalline domains oriented along grow from the outer wall to the inner wall to minimize the surface energy. In stark contrast, excessive water content (5 wt%) in the electrolyte leads to sporadic multiple nucleation of randomly oriented anatase crystallites in amorphous medium at the early stage of crystallization, which results in the formation of randomly oriented nanotube arrays (r-NTAs). During subsequent thermal annealing, multiple nucleation sites hindered the growth of the -oriented grains from the outer wall. When the water content in an ethylene glycol-based electrolyte is optimized by reducing the uncertainty of water content, the X-ray diffraction patterns of NTAs exhibited a 200 times increase in the intensity ratio of (004) to (200) peaks of the anatase phase. p-NTAs exhibit ~5 times lower electrical resistance than r-NTAs, which supports the idea that improving the preferred orientation of NTAs is a promising method for developing efficient electronic devices.
ISSN:1466-8033
DOI:10.1039/c5ce01165e