Monte Carlo Calculations of the Free Energy of Binary SII Hydrogen Clathrate Hydrates for Identifying Efficient Promoter Molecules

The thermodynamics of binary sII hydrogen clathrates with secondary guest molecules is studied with Monte Carlo simulations. The small cages of the sII unit cell are occupied by one H2 guest molecule. Different promoter molecules entrapped in the large cages are considered. Simulations are conducted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2013-01, Vol.117 (4), p.1155-1165
Hauptverfasser: Atamas, Alexander A, Cuppen, Herma M, Koudriachova, Marina V, de Leeuw, Simon W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermodynamics of binary sII hydrogen clathrates with secondary guest molecules is studied with Monte Carlo simulations. The small cages of the sII unit cell are occupied by one H2 guest molecule. Different promoter molecules entrapped in the large cages are considered. Simulations are conducted at a pressure of 1000 atm in a temperature range of 233–293 K. To determine the stabilizing effect of different promoter molecules on the clathrate, the Gibbs free energy of fully and partially occupied sII hydrogen clathrates are calculated. Our aim is to predict what would be an efficient promoter molecule using properties such as size, dipole moment, and hydrogen bonding capability. The gas clathrate configurational and free energies are compared. The entropy makes a considerable contribution to the free energy and should be taken into account in determining stability conditions of binary sII hydrogen clathrates.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp306585t