Mitigation of laser damage growth in fused silica by using a non-evaporative technique
A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm.The influence of the pulse frequency of a CO 2 laser on the mitigation effect is studied.It is found that a more symmetrical and smooth mitigation crater can...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2012-05, Vol.21 (5), p.316-322 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm.The influence of the pulse frequency of a CO 2 laser on the mitigation effect is studied.It is found that a more symmetrical and smooth mitigation crater can be obtained by increasing the laser pulse frequency form 0.1 to 20 kHz.Furthermore,the sizes of laser-affected and distorted zones decrease with the increase of the laser pulse frequency,leading to less degradation of the wave-front quality of the conditioned sample.The energy density of the CO 2 laser beam is introduced for selecting the mitigation parameters.The damage sites can be successfully mitigated by increasing the energy density in a ramped way.Finally,the laser-induced damage threshold(LIDT) of the mitigated site is tested using 355 nm laser beam with a small spot(0.23 mm 2) and a large spot(3.14 mm 2),separately.It is shown that the non-evaporative mitigation technique is a successful method to stop damage re-initiation since the average LIDTs of mitigated sites tested with small or large laser spots are higher than that of pristine material. |
---|---|
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/5/054216 |