The Tunable Hydrophobic Effect on Electrically Doped Graphene

Using molecular dynamics simulations, we study the hydrophobic effect on electrically doped single layer graphene. With doping levels measured in volts, large changes in contact angle occur for modest voltages applied to the sheet. The effect can be understood as a renormalization of the surface ten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2014-01, Vol.118 (2), p.530-536
Hauptverfasser: Ostrowski, Joseph H. J, Eaves, Joel D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using molecular dynamics simulations, we study the hydrophobic effect on electrically doped single layer graphene. With doping levels measured in volts, large changes in contact angle occur for modest voltages applied to the sheet. The effect can be understood as a renormalization of the surface tension between graphene and water in the presence of an electric field generated by the dopant charge, an entirely collective effect termed electrowetting. Because the electronic density of states scales linearly in the vicinity of the Fermi energy, the cosine of the contact angle scales quartically with the applied voltage rather than quadratically, as it would for a two-dimensional metal or in multiple layer graphene. While electrowetting explains the phenomenon, it does not account for the slight asymmetry observed in the hydrophobic response between n- and p-doping.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp409342n