Two-dimensional arsenic monolayer sheet predicted from first-principles

Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 e V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2015-03, Vol.24 (3), p.275-279
1. Verfasser: 濮春英 叶小涛 蒋华龙 张飞武 卢志文 何俊宝 周大伟
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 e V in the hybrid HSE06 functional calculations. The valence band maximum(VBM) and the conduction band minimum(CBM) are mainly occupied by the 4p orbitals of arsenic atoms,which is consistent with the partial charge densities of VBM and CBM. The charge density of the VBM G point has the character of a π bond, which originates from p orbitals. Furthermore, tensile and compressive strains are applied in the armchair and zigzag directions, related to the tensile deformations of zigzag and armchair nanotubes, respectively. We find that the ultimate strain in zigzag deformation is 0.13, smaller than 0.18 of armchair deformation. The limit compressive stresses of single-layer arsenic along armchair and zigzag directions are-4.83 GPa and-4.76 GPa with corresponding strains of-0.15 and-0.14, respectively.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/3/036301