Conformational Study of Z‑Glu-OH and Z‑Arg-OH: Dispersion Interactions versus Conventional Hydrogen Bonding
The gas-phase conformational preferences of the model dipeptides Z-Glu-OH and Z-Arg-OH have been studied in the low-temperature environment of a supersonic jet. IR-UV ion-dip spectra obtained using the free electron laser FELIX provide conformation-specific IR spectra, which in combination with dens...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-02, Vol.117 (6), p.1216-1227 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gas-phase conformational preferences of the model dipeptides Z-Glu-OH and Z-Arg-OH have been studied in the low-temperature environment of a supersonic jet. IR-UV ion-dip spectra obtained using the free electron laser FELIX provide conformation-specific IR spectra, which in combination with density functional theory (DFT) allow us to determine the conformational structures of the peptides. Molecular dynamics modeling using simulated annealing generates a variety of low-energy structures, for which geometry optimization and frequency calculations are then performed using the B3LYP functional with the 6-311+G(d,p) basis set. By comparing experimental and theoretical IR spectra, three conformations for Z-Glu-OH and two for Z-Arg-OH have been identified. For three of the five structures, the dispersion interaction provides an important contribution to the stabilization, emphasizing the importance of these forces in small peptides. Therefore, dispersion-corrected DFT functionals (M05-2X and B97D) have also been employed in our theoretical analysis. Second-order Møller–Plesset perturbation theory (MP2) has been used as benchmark for the relative energies of the different conformational structures. Finally, we address the ongoing debate on the gas-phase structure of arginine by elucidating whether isolated arginine is canonical, tautomeric, or zwitterionic. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp3053339 |