Dissociative Chemisorption of Methane on Pt(110)-(1×2): Effects of Lattice Motion on Reactions at Step Edges

The dissociative chemisorption of methane on Pt(110)-(1×2) is examined, with a focus on how the reaction dynamics are modified by the motion of the lattice atoms. The barriers to dissociation are found to be lowest at the step edges. The relaxation of the lattice in the presence of the dissociating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-09, Vol.117 (36), p.8651-8659
Hauptverfasser: Han, Dongwon, Nave, Sven, Jackson, Bret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dissociative chemisorption of methane on Pt(110)-(1×2) is examined, with a focus on how the reaction dynamics are modified by the motion of the lattice atoms. The barriers to dissociation are found to be lowest at the step edges. The relaxation of the lattice in the presence of the dissociating molecule is found to be far more complicated than on the smooth surfaces of Pt and Ni. The dissociative sticking probabilities are computed using a full-dimensional treatment based on the reaction path Hamiltonian that includes all 15 molecular degrees of freedom and the effects of lattice motion. The potential energy surface and all parameters in our model are computed from first principles. The effects of lattice motion are strong, but not significantly larger than for dissociation on smoother surfaces. Vibrational excitation of the molecule can significantly enhance reactivity, though this effect varies from mode to mode. Agreement with recent experiments with regard to the variation of reactivity with translational energy and substrate temperature is good.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp402987w