Process Parameter Prediction of Differential Pressure Vacuum Casting Based on Support Vector Machine

To reduce warpage deformation of the differential pressure vacuum casting (DPVC) products and to improve product quality, One prediction method for process parameters based on support vector machine (SVM) and artificial fish-swarm algorithm (AFSA) is proposed.Firstly sample test data is abtained by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2014-08, Vol.621, p.633-638
Hauptverfasser: Hu, Qing Xi, Zhang, Hai Guang, Zhang, Zhuang Ya, Zhang, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To reduce warpage deformation of the differential pressure vacuum casting (DPVC) products and to improve product quality, One prediction method for process parameters based on support vector machine (SVM) and artificial fish-swarm algorithm (AFSA) is proposed.Firstly sample test data is abtained by using orthogonal experimental design and numerical simulation to construct models to forecast warpage of DPVC product based on SVM. Simultaneously to improve the predictive accuracy of the model, AFSA is introduced to optimize the SVM model. And then using this model recommends and adjusts the DPVC process in order to achieve quality control. Finally , through the analysis of a mouse shell , the validity of the method proposed is verified, providing a feasible method for DPVC product quality control
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.621.633