Studies on Shock Attenuation in Plastic Materials and Applications in Detonation Wave Shaping
Pressure in plastic materials attenuates due to change of impedance, phase change in the medium and plastic deformation. A lot of theoretical and experimental efforts have been devoted to the attenuation of shock wave produced by the impact of explosive driven flyer plate. However comparatively less...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2012-01, Vol.377 (1), p.12051-9 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pressure in plastic materials attenuates due to change of impedance, phase change in the medium and plastic deformation. A lot of theoretical and experimental efforts have been devoted to the attenuation of shock wave produced by the impact of explosive driven flyer plate. However comparatively less work has been done on the attenuation of shock waves due to contact explosive detonation. Present studies deal with the attenuation of explosive driven shock waves in various plastic materials and its applications in design of Hybrid Detonation Wave Generator In present work shock attenuating properties of different polymers such as Perspex, Teflon, nylon, polypropylene and viton has been studied experimentally using rotating mirror streak camera and electrical position pins. High explosive RDX/TNT and OCTOL of diameter 75-100mm and thickness 20 to 50mm were detonated to induce shock wave in the test specimens. From experimental determined shock velocity at different locations the attenuation in shock pressure was calculated. The attenuation of shock velocity with thickness in the material indicates exponential decay according to relation US UOexp(-ax). In few of the experiments manganin gauge of resistance 50 ohms was used to record stress time profile across shock wave. The shock attenuation data of Viton has successfully been used in the design of hybrid detonation wave generator using Octol as high explosive. While selecting a material it was ensured that the attenuated shock remains strong enough to initiate an acceptor explosive. Theoretical calculation were supported by Autodyne 2D hydro-code simulation which were validated with the experiments conducted using high speed streak photography and electrical shock arrival pins. Shock attenuation data of Perspex was used to establishing card gap test and wedge test in which test items is subjected to known pressure pulse by selecting the thickness of the plastic material. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/377/1/012051 |