Ultraviolet Resonance Raman Spectroscopy of Explosives in Solution and the Solid State

Resonance Raman cross sections of common explosives have been measured by use of excitation wavelengths in the deep-UV from 229 to 262 nm. These measurements were performed both in solution and in the native solid state for comparison. While measurements of UV Raman cross sections in solution with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-05, Vol.117 (20), p.4158-4166
Hauptverfasser: Emmons, Erik D, Tripathi, Ashish, Guicheteau, Jason A, Fountain, Augustus W, Christesen, Steven D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resonance Raman cross sections of common explosives have been measured by use of excitation wavelengths in the deep-UV from 229 to 262 nm. These measurements were performed both in solution and in the native solid state for comparison. While measurements of UV Raman cross sections in solution with an internal standard are straightforward and commonly found in the literature, measurements on the solid phase are rare. This is due to the difficulty in preparing a solid sample in which the molecules of the internal standard and absorbing analyte/explosive experience the same laser intensity. This requires producing solid samples that are mixtures of strongly absorbing explosives and an internal standard transparent at the UV wavelengths used. For the solid-state measurements, it is necessary to use nanostructured mixtures of the explosive and the internal standard in order to avoid this bias due to the strong UV absorption of the explosive. In this study we used a facile spray-drying technique where the analyte of interest was codeposited with the nonresonant standard onto an aluminum-coated microscope slide. The generated resonance enhancement profiles and quantitative UV–vis absorption spectra were then used to plot the relative Raman return as a function of excitation wavelength and particle size.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp402585u